metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2,4-dibromo-6-(cyclopropyliminomethyl)phenolato]zinc(II)

Wen-Bing Yuan,^a Hong-Wu Xu,^b Jin-Xia Li,^b Min Liu^a and Qi Zhang^a*

^aHainan Provincial Key Laboratory of Fine Chemicals, Hainan University, Hainan 570228, People's Republic of China, and ^bDepartment of Materials and Chemical Engineering, ZhongYuan University of Technology, Zhengzhou Henan 450007, People's Republic of China

Correspondence e-mail: zhangqi_hainu@163.com

Received 8 May 2007; accepted 10 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.086; data-to-parameter ratio = 18.9.

The title complex, $[Zn(C_{10}H_8Br_2NO)_2]$, is a mononuclear zinc(II) compound. The Zn^{II} ion is four-coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral coordination.

Related literature

For related literature, see: You (2005*a*,*b*); Yuan & Zhang (2005).

Experimental

Crystal data

 $\begin{bmatrix} \text{Zn}(\text{C}_{10}\text{H}_8\text{Br}_2\text{NO})_2 \end{bmatrix} \qquad \begin{array}{l} \gamma = 72.24 \ (3)^\circ \\ W_r = 701.36 \\ \text{Triclinic, } P\overline{1} \\ a = 7.5490 \ (15) \text{ Å} \\ b = 9.883 \ (2) \text{ Å} \\ c = 15.814 \ (3) \text{ Å} \\ a = 78.34 \ (3)^\circ \\ \beta = 82.49 \ (2)^\circ \\ \end{array}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
T_{min} = 0.182, T_{max} = 0.187

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.086$ S = 1.044962 reflections 4962 independent reflections 3772 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

12652 measured reflections

262 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.73 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of Hainan Province (No. 20602) and the Open Fund (No. hnfc2006005) of Hainan Provincial Key Laboratory of Fine Chemicals for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2029).

References

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). *SMART* (Version 5.628) and *SAINT* (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- You, Z.-L. (2005a). Acta Cryst. E61, m2499-m2500.
- You, Z.-L. (2005b). Acta Cryst. E61, m2501-m2502.
- Yuan, W.-B. & Zhang, Q. (2005). Acta Cryst. E61, m1883-m1884.

supplementary materials

Acta Cryst. (2007). E63, m1702 [doi:10.1107/S1600536807023136]

Bis[2,4-dibromo-6-(cyclopropyliminomethyl)phenolato]zinc(II)

W.-B. Yuan, H.-W. Xu, J.-X. Li, M. Liu and Q. Zhang

Comment

Recently, we have reported the structure of a Schiff base copper(II) complex (Yuan & Zhang, 2005). As an extension of our investigations in this area, we report here the title compound, a new mononuclear Schiff base zinc(II) complex, (I).

In (I), the Zn atom is four-coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral coordination (Fig. 1). The bond lengths and angles are comparable to the values observed in the similar Schiff base zinc(II) complexes (You, 2005*a*,b).

Experimental

3,5-Dibromo-2-hydroxybenzaldehyde (1.0 mmol, 280.0 mg), cyclopropylamine (1.0 mmol, 57.0 mg) and zinc dichloride (0.5 mmol, 68.1 mg) were dissolved in a methanol solution (50 ml). The mixture was stirred at room temperature for 30 min and filtered. After keeping the filtrate in air for 8 days, colorless block-shaped crystals were formed.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and $U_{iso}(H) = 1.2$ times $U_{eq}(C)$. The maximum residual electron density peak is observed 1.91 Å from Br3. The minimum residual electron density peak is observed 0.86 Å from Br1.

Figures

Fig. 1. The structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Bis[2,4-dibromo-6-(cyclopropyliminomethyl)phenolato]zinc(II)

Crystal data	
$[Zn(C_{10}H_8Br_2NO)_2]$	Z = 2
$M_r = 701.36$	$F_{000} = 672$
Triclinic, <i>P</i> T	$D_{\rm x} = 2.122 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.5490 (15) Å	Cell parameters from 3389 reflections

b = 9.883 (2) Å c = 15.814 (3) Å $\alpha = 78.34 (3)^{\circ}$ $\beta = 82.49 (2)^{\circ}$ $\gamma = 72.24 (3)^{\circ}$ $V = 1097.4 (4) \text{ Å}^{3}$

Data collection

Bruker SMART 1000 CCD area detector diffractometer	4962 independent reflections
Radiation source: fine-focus sealed tube	3772 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 298(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.182, \ T_{\max} = 0.187$	$k = -12 \rightarrow 12$
12652 measured reflections	$l = -20 \rightarrow 20$

 $\theta = 2.2 - 26.0^{\circ}$

 $\mu = 8.42 \text{ mm}^{-1}$ T = 298 (2) K

Block, colorless

 $0.21\times0.20\times0.20~mm$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.086$	$w = 1/[\sigma^2(F_o^2) + (0.0384P)^2 + 0.0662P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
4962 reflections	$\Delta \rho_{max} = 0.65 \text{ e } \text{\AA}^{-3}$
262 parameters	$\Delta \rho_{min} = -0.73 \text{ e } \text{\AA}^{-3}$
Duine and a site 1 and in a structure incoming this of	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.63891 (6)	0.71541 (4)	0.74530 (2)	0.03400 (12)
Br1	0.26207 (8)	0.94742 (6)	0.97427 (3)	0.07098 (18)
Br2	0.68209 (6)	0.50762 (5)	1.21708 (2)	0.05179 (13)
Br3	0.27136 (7)	0.65425 (6)	0.53715 (3)	0.05651 (14)
Br4	0.68691 (6)	0.92573 (4)	0.27077 (2)	0.04488 (12)
01	0.5050 (4)	0.7705 (3)	0.84927 (15)	0.0408 (6)
O2	0.5105 (3)	0.7210 (3)	0.64830 (14)	0.0390 (6)
N1	0.7902 (4)	0.5186 (3)	0.80191 (18)	0.0315 (7)
N2	0.7973 (4)	0.8430 (3)	0.68016 (18)	0.0346 (7)
C1	0.6930 (5)	0.5771 (4)	0.9477 (2)	0.0305 (8)
C2	0.5521 (5)	0.7084 (4)	0.9267 (2)	0.0313 (8)
C3	0.4576 (5)	0.7739 (4)	0.9983 (2)	0.0383 (9)
C4	0.4982 (5)	0.7182 (4)	1.0822 (2)	0.0395 (9)
H4	0.4330	0.7660	1.1268	0.047*
C5	0.6371 (5)	0.5904 (4)	1.1000 (2)	0.0367 (9)
C6	0.7302 (5)	0.5184 (4)	1.0352 (2)	0.0366 (9)
Н6	0.8191	0.4298	1.0485	0.044*
C7	0.7958 (5)	0.4884 (4)	0.8844 (2)	0.0354 (8)
H7	0.8751	0.3992	0.9063	0.042*
C8	0.9041 (5)	0.4100 (4)	0.7528 (2)	0.0381 (9)
H8	0.9931	0.3281	0.7853	0.046*
С9	0.9640 (6)	0.4547 (4)	0.6611 (2)	0.0478 (11)
H9A	0.9240	0.5566	0.6368	0.057*
H9B	1.0871	0.4028	0.6393	0.057*
C10	0.8206 (6)	0.3770 (5)	0.6822 (3)	0.0512 (11)
H10A	0.8559	0.2776	0.6735	0.061*
H10B	0.6928	0.4314	0.6709	0.061*
C11	0.6953 (5)	0.8382 (4)	0.5393 (2)	0.0306 (8)
C12	0.5560 (5)	0.7659 (4)	0.5682 (2)	0.0313 (8)
C13	0.4627 (5)	0.7448 (4)	0.5020 (2)	0.0353 (8)
C14	0.5031 (5)	0.7891 (4)	0.4152 (2)	0.0355 (8)
H14	0.4384	0.7728	0.3739	0.043*
C15	0.6398 (5)	0.8575 (4)	0.3902 (2)	0.0344 (8)
C16	0.7330 (5)	0.8838 (4)	0.4509 (2)	0.0344 (8)
H16	0.8226	0.9328	0.4332	0.041*
C17	0.7993 (5)	0.8760 (4)	0.5980 (2)	0.0361 (8)
H17	0.8776	0.9316	0.5719	0.043*
C18	0.9148 (6)	0.8962 (4)	0.7221 (2)	0.0419 (9)
H18	1.0079	0.9340	0.6837	0.050*
C19	0.9688 (7)	0.8296 (5)	0.8106 (3)	0.0531 (11)
H19A	0.9238	0.7485	0.8390	0.064*
H19B	1.0926	0.8241	0.8242	0.064*
C20	0.8322 (7)	0.9723 (5)	0.7968 (3)	0.0592 (12)
H20A	0.8720	1.0547	0.8017	0.071*
H20B	0.7031	0.9790	0.8165	0.071*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0398 (3)	0.0374 (2)	0.0239 (2)	-0.01177 (19)	-0.00172 (17)	-0.00263 (17)
Br1	0.0755 (4)	0.0668 (3)	0.0449 (3)	0.0230 (3)	-0.0076 (2)	-0.0167 (2)
Br2	0.0531 (3)	0.0735 (3)	0.0269 (2)	-0.0183 (2)	-0.00901 (17)	-0.00014 (19)
Br3	0.0553 (3)	0.0854 (4)	0.0435 (2)	-0.0439 (3)	-0.0016 (2)	-0.0088 (2)
Br4	0.0519 (3)	0.0523 (3)	0.02541 (19)	-0.0129 (2)	-0.00125 (16)	0.00065 (16)
01	0.0453 (16)	0.0445 (16)	0.0227 (12)	-0.0010 (13)	-0.0005 (11)	-0.0030 (11)
O2	0.0416 (15)	0.0552 (17)	0.0236 (13)	-0.0246 (13)	-0.0013 (11)	0.0014 (11)
N1	0.0328 (17)	0.0344 (16)	0.0269 (15)	-0.0097 (13)	0.0008 (12)	-0.0064 (12)
N2	0.0398 (18)	0.0368 (17)	0.0291 (16)	-0.0136 (14)	-0.0036 (13)	-0.0052 (13)
C1	0.0296 (19)	0.0345 (19)	0.0263 (17)	-0.0088 (15)	-0.0002 (14)	-0.0045 (14)
C2	0.0309 (19)	0.040 (2)	0.0248 (17)	-0.0131 (16)	-0.0010 (14)	-0.0050 (15)
C3	0.035 (2)	0.040 (2)	0.035 (2)	-0.0048 (17)	-0.0021 (16)	-0.0050 (16)
C4	0.045 (2)	0.053 (2)	0.0255 (18)	-0.019 (2)	0.0018 (16)	-0.0116 (17)
C5	0.040 (2)	0.050 (2)	0.0258 (18)	-0.0207 (19)	-0.0097 (16)	-0.0008 (16)
C6	0.038 (2)	0.039 (2)	0.033 (2)	-0.0118 (17)	-0.0072 (16)	-0.0022 (16)
C7	0.035 (2)	0.032 (2)	0.037 (2)	-0.0090 (16)	-0.0040 (16)	-0.0038 (16)
C8	0.038 (2)	0.038 (2)	0.037 (2)	-0.0055 (17)	-0.0017 (16)	-0.0115 (16)
C9	0.054 (3)	0.045 (2)	0.041 (2)	-0.009 (2)	0.0113 (19)	-0.0154 (18)
C10	0.052 (3)	0.056 (3)	0.054 (3)	-0.015 (2)	-0.005 (2)	-0.027 (2)
C11	0.031 (2)	0.0312 (19)	0.0289 (18)	-0.0081 (15)	-0.0053 (15)	-0.0036 (14)
C12	0.032 (2)	0.033 (2)	0.0257 (17)	-0.0060 (16)	-0.0009 (14)	-0.0047 (15)
C13	0.034 (2)	0.037 (2)	0.036 (2)	-0.0121 (17)	0.0001 (16)	-0.0066 (16)
C14	0.039 (2)	0.039 (2)	0.0295 (19)	-0.0097 (17)	-0.0057 (16)	-0.0087 (16)
C15	0.035 (2)	0.036 (2)	0.0261 (18)	-0.0037 (16)	0.0023 (15)	-0.0046 (15)
C16	0.037 (2)	0.034 (2)	0.034 (2)	-0.0146 (17)	0.0007 (16)	-0.0047 (16)
C17	0.037 (2)	0.040 (2)	0.035 (2)	-0.0172 (17)	-0.0014 (16)	-0.0058 (16)
C18	0.047 (2)	0.051 (2)	0.035 (2)	-0.024 (2)	-0.0004 (17)	-0.0103 (17)
C19	0.064 (3)	0.058 (3)	0.047 (2)	-0.030 (2)	-0.021 (2)	-0.001 (2)
C20	0.062 (3)	0.065 (3)	0.059 (3)	-0.018 (3)	-0.011 (2)	-0.028 (2)

Geometric parameters (Å, °)

Zn1—O1	1.901 (2)	C8—C10	1.486 (5)
Zn1—O2	1.902 (2)	С8—Н8	0.9800
Zn1—N1	2.024 (3)	C9—C10	1.477 (6)
Zn1—N2	2.038 (3)	С9—Н9А	0.9700
Br1—C3	1.898 (4)	С9—Н9В	0.9700
Br2—C5	1.897 (3)	C10—H10A	0.9700
Br3—C13	1.890 (4)	C10—H10B	0.9700
Br4—C15	1.898 (3)	C11-C16	1.399 (5)
O1—C2	1.296 (4)	C11—C12	1.423 (5)
O2—C12	1.293 (4)	C11—C17	1.459 (5)
N1—C7	1.281 (4)	C12—C13	1.416 (5)
N1—C8	1.447 (4)	C13—C14	1.378 (5)
N2—C17	1.274 (4)	C14—C15	1.375 (5)

N2—C18	1.443 (5)	C14—H14	0.9300
C1—C2	1.415 (5)	C15—C16	1.369 (5)
C1—C6	1.416 (5)	С16—Н16	0.9300
C1—C7	1.453 (5)	С17—Н17	0.9300
C2—C3	1.419 (5)	C18—C19	1.473 (5)
C3—C4	1.366 (5)	C18—C20	1.493 (5)
C4—C5	1.378 (5)	C18—H18	0.9800
C4—H4	0.9300	C19—C20	1.465 (6)
C5—C6	1.360 (5)	C19—H19A	0.9700
С6—Н6	0.9300	C19—H19B	0.9700
С7—Н7	0.9300	C20—H20A	0.9700
C8—C9	1.483 (5)	C20—H20B	0.9700
O1—Zn1—O2	120.70 (11)	Н9А—С9—Н9В	114.9
O1—Zn1—N1	95.56 (11)	C9—C10—C8	60.0 (3)
O2—Zn1—N1	116.58 (12)	С9—С10—Н10А	117.8
O1—Zn1—N2	116.16 (12)	C8—C10—H10A	117.8
O2—Zn1—N2	95.52 (11)	C9—C10—H10B	117.8
N1—Zn1—N2	113.73 (12)	C8—C10—H10B	117.8
C2—O1—Zn1	125.0 (2)	H10A—C10—H10B	114.9
C12—O2—Zn1	126.1 (2)	C16—C11—C12	120.7 (3)
C7—N1—C8	117.0 (3)	C16—C11—C17	116.0 (3)
C7—N1—Zn1	120.1 (2)	C12—C11—C17	123.3 (3)
C8—N1—Zn1	122.8 (2)	O2—C12—C13	119.5 (3)
C17—N2—C18	116.9 (3)	O2—C12—C11	125.0 (3)
C17—N2—Zn1	119.8 (3)	C13—C12—C11	115.4 (3)
C18—N2—Zn1	123.3 (2)	C14—C13—C12	123.2 (3)
C2—C1—C6	120.4 (3)	C14—C13—Br3	119.7 (3)
C2—C1—C7	123.5 (3)	C12—C13—Br3	117.1 (3)
C6—C1—C7	115.8 (3)	C15—C14—C13	119.5 (3)
O1—C2—C1	125.5 (3)	C15—C14—H14	120.3
O1—C2—C3	119.2 (3)	C13—C14—H14	120.3
C1—C2—C3	115.2 (3)	C16-C15-C14	120.4 (3)
C4—C3—C2	123.8 (3)	C16—C15—Br4	120.3 (3)
C4—C3—Br1	119.1 (3)	C14C15Br4	119.2 (3)
C2—C3—Br1	117.1 (3)	C15-C16-C11	120.9 (3)
C3—C4—C5	119.2 (3)	C15—C16—H16	119.5
C3—C4—H4	120.4	C11—C16—H16	119.5
C5—C4—H4	120.4	N2—C17—C11	128.7 (3)
C6—C5—C4	120.7 (3)	N2—C17—H17	115.7
C6—C5—Br2	120.2 (3)	C11—C17—H17	115.7
C4—C5—Br2	118.9 (3)	N2—C18—C19	120.8 (3)
C5—C6—C1	120.6 (3)	N2—C18—C20	118.8 (4)
С5—С6—Н6	119.7	C19—C18—C20	59.2 (3)
C1—C6—H6	119.7	N2—C18—H18	115.5
N1—C7—C1	127.7 (3)	C19—C18—H18	115.5
N1—C7—H7	116.1	C20—C18—H18	115.5
С1—С7—Н7	116.1	C20—C19—C18	61.1 (3)
N1—C8—C9	119.1 (3)	С20—С19—Н19А	117.7
N1—C8—C10	118.5 (3)	C18—C19—H19A	117.7

supplementary materials

C9—C8—C10	59.7 (3)	C20—C19—H19B	117.7
N1—C8—H8	115.9	C18—C19—H19B	117.7
С9—С8—Н8	115.9	H19A—C19—H19B	114.8
С10—С8—Н8	115.9	C19—C20—C18	59.7 (3)
C10—C9—C8	60.2 (3)	С19—С20—Н20А	117.8
С10—С9—Н9А	117.7	C18—C20—H20A	117.8
С8—С9—Н9А	117.7	С19—С20—Н20В	117.8
С10—С9—Н9В	117.7	C18—C20—H20B	117.8
С8—С9—Н9В	117.7	H20A-C20-H20B	114.9

Fig. 1